
UDC 533.6. 011 

THE LAMJNAR HYPERSONIC TRAIJ., DOWNSTREAM OF A LIFT AIRPOIL 
PMM Vol. 42, E 2, 1978, pp. 277 -288 

O.S.RYZHOVa& E.D.TERENT*EV 

(Moscow ) 
( Received January 6,1977 1 

The asymptotics of solution of the Navier - Stokes equation which determ - 
ines the flow at considerable distance downstream of a lift airfoil of finite 

dimensions is investigated. The velocity field is divided in two regions. In 
the outer region the motion of gas conforms to Euler ‘s equation, while the 
inner region contains a tminar trail which is determined in the longitudinal 
direction by the heat flux and by tangential viscous stresses. Thecmtinuation 
of solution from one region to the other is achieved by the method of joining 
external and internal asymptotic expansions. In the case of three-dimensional 

flows the problem of joining is complicated by the oscillatory character of 

the trail external boundary induced by the lift force. 

1, Let us consider a steady hypersonic flow at considerable distance from a lift 
airfoil subjected to drag and lift. We denote the density of gas in the oncoming stream 
by Pm and its velocity along the axis of a cylindrical system of coordinates 2, r, Cp 

by z;,n. We assume that upstream of the bow shock wave the pressure pa, = 0 and 
the Mach number &f_ = 00 , and that the gas conforms to the Clapeyron equation 
of state, with both specific heats c, and co constant and their ratio denoted by x,, 
assumed to be 1 < x < 2. The dependence of viscosity coefficients II and AZ and 
of thermal conductivity k on specific enthalpy w is assumed linear: & = Arow, 

As = &w, and k=kow,We introduce the Prandtl number iVpr = cphlo / k,. It is 
convenient to use dimensionless variables and unknown functions taking f&, za? , 
and hia as the ~ndamen~l reference units. 

The principal terms of the asymptotic solution of the Navier - Stokes equations at 
considerable distance downstream of a finite body in an axisymmetric hypersonic flow 
were determined by Sychev Cl I. The stream pattern derived by him consists of two 
essentially different regions. In establishing the form of asymptotics for the outer re- 
gion it is possible to neglect the effects of viscosity and thermal conductivity , where 

the motion of gas obeys the simpler Euler’s equations. The outer region is separated 
from the oncoming stream by a shock wave whose structure was investigated in C21. The 
axisymmetric velocity field is defined by the solution of the problem of strong fuse ex- 

plosion indicated by Sedov [3,4 1. In that solution the dimensionless parameters of gas 
depend on the single self-similar variable 

“=$j+ b=const (1.1) 

In conformity with the described results of axisymmetric flow analysis we shall 
distinguish in the solution of the three-dimensional problem two regions ( Fig. 11, and 
neglect in the cuter region the effects of viscosity and thermal conductivity on the mo- 
tion of gas, The principal terms of the asymptotic solution of Euler’s equation under 
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such conditions are presented in [5]. 

Fig. 1 

If in addition to drag the streamlined body is subjected to lift, the shape of the shock 
wave for 5 --t 00 is specified by formula 

rs = (bx)“l (1 + b,x-“1 In x cos cp + . . .) (1.2) 

where the constant bU is proportional to the lift force F,. 
It will be readily seen that all terms of the solution of Euler ‘s equation corms - 

ponding to the compression shock (1.2 ) simultaneously represent the asymptotic so - 
lution of the Navier - Stokes input equations. The systems of ordinary differential 
equations for functions of the self-similar variable E are the same independently of 
whether the coefficients of visccsity and thermal conductivity are assumed zero or to 
have finite values. For plane-parallel flows around a lift profile this problem was con- 
sidered in detail in [S 1. 

The inner region indicated by the numeral 2 in Fig. 1 contains the trailing vortex. 
In that region it is no longer pcssible to neglect the viscosity and thermal conductivity 
of gas ,since the solution that corresponds to the shock wave (1.2) the terms rejected 

in the Navier - Stokes equations begin to increase rapidly [5]. Sychev [l ] introduced 

in the analysis of flow in the trail the variable 

5 = F&(x-1)/2(x+1) = r 
b’fl&(%+l) 

(1.3) 

The form of solution in the trail is determined by the behavior of gasdynamic 
functions for E + 0. We denote the projections of the velocity vector on the axes 

2, r , and cp by ZJ,., v, , and v, . Expressing the asymptotic formulas presented 

in [5,7 ] in terms of the variable f;, we conclude that 

u, = 1 - & bx+‘@+l) [us21 (6) + F, (3, 5) ~0s cp + . - -1 (1.4) 

VT = &- b%+~(~+l) [u,21(5) + F,, (x7 f) cos cp + - * .I 

vv = -!- bW, (x, I;) sin cp + . . . 
x+1 

P = -&z-+1) {pal(f) + P, (5, 5) cm cp + . . .} 
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1 
p= 2(x+1) 2 

-L (pal (5) + ir-x~(x+1) [Paa (5) + F, (57 5) cos cp + * * *I) CL4 ) 

w = 2 $_ I)” b~-~‘@+‘) (~1 (S) + F, (x,5) ~0s ‘P + . . .) 

F, = byx-kr kc (P) cos (k, In x) + qas (i) sin (k, In x)1 

4 = %, %, u’cp, P, P, w. 

kt= %--I v- 3-X 
k4 = 

2--x 
2(x+1) x--l’ 2(x+1) 

Functions with subscript 21, which form the first approximation, determine the 
trail structure downstream of any body subjected only to drag. To derive boundary 

conditions for these it is sufficient to know only the principal terms of the asymptotics 
that establish the distribution of parameters of air in the vicinity of the fuse explosion. 
Let us consider the intermediate region where r = q.@, 1 / (x + 1) < a < f/2. 
The passing to limit 2 + co in that region is effected with q = con& , when, 

asimpliedbyformulas(l.l)and(l.3), ~--+cQ and F, --+ 0. In conformity 

with the method of joining outer and inner asymptotic expansions we have [8,9] 

x 
VA.21 = - 

li, c_ 

x -1 1 /i, 2’(x-l)+...: v,,,=*r,;... (1.5 ) 

paI = lilj2’(*-l) + . . ., prl = h_, + . . ., w21 = +5-W-‘) + . . . 
1 

in which the dependence of coefficients k, and 1’.3 on x is given in [lo 1. 

Function pez is generated by the second term of the asymptotic expansion for the 

pressure in the solution of the problem of strong explosion. The boundary condition for 
it states that 

P0<, = (’ + ‘)’ tX - I) ki~sx/(X-l) + (1.6) 
IU 4x” 

. . . 

Finally,for the functions that depend on the asymptotic perturbations of the stress 
because of the lift acting on the body with 5 -+ 00, we obtain 

X 
z; X!k = -- ___&c-(?:~+i):(“-i) [c,cos(klnQ + casin(kInc)] -I- . . . 

x (- 1 /;p 
(1.7) 

u r2c = 
v 5-x’ !z-1) [(- c2 + kc3) ~0s (Is In 5) - 

(/cc, + C3) Siii (k I:! c)] -k . . 
x2__ 1 

UFzc - 4xk, 5 G-;:~(x-l) ([(a - x) cz + Icw,] cos (k In j) + 

I.- ,‘;xc, -;- (:‘_ - x) CT::] sin (k In 5)) + . . . 

;Qc =~ p.!r:! /(::-I) Cl ( ( 1 : s..: (i; Ii; c) -i_ c3 sin (L: In L)j + . . . 

P2e = (X+1)2(X-1) ~1W1) 
2x2 [( 

kc2+--&cp)sin(kIn~)]+... 
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The expressions for ?v,es, ut2*, . a ., WAS not shown above are obtained from 
related expressions for pzipxgc, z+sCt * * .$ @+3C by the subs~~ti~ ~a --f -cs and 

G --f ca. Constants e, and ca are obtained from the solution of the Cauchy pro- 
blem for functions of the self-similar variable E in the outer region [S ],FOF x = 

1.4 they are cs = 0.085 and cs = 4.978, 

2. The substitution of expansions (1.4 ) into the input Navier - Stokes equations 
yields a system of ordinary differential equations for first approximation functions 

(2.1) 

WZIUX = (x - ~)PB, 4 = ;;; -i_ ;;z 

The sought solution must satisfy the limit relati~~ps (X. 5 ) for % + 00 _ when 
5 = 0 tile conditions of flow symmetry together with the sti~~la~o~ of absence of 

heat sources yield v,sl = dv,,l I d[ = &Q, / dc = Q . 
In system (2.1) the equation for the longitudinal component &s~ of the velocity 

vector differs from the remaining ones which depend only on those terms of the Navier 
- Stokes equations which are related to heat transfer, while viscous properties of gas 
have no effect on the form of these, On the other hand I) in the derivation of the equa- 
tion for Z&I the allowance for viscosity is essential. When NPr = 4 system (2.1) 
is simpler t since the left-hand sides of the second and fifth equations are then the same E 13. 

Let Npp#f:. System (2.1) without the equation for &a1 can then be inte- 
grated twice. Carrying it out and using the conditions of symmetry for 5 = 0 1 we 
obtain for function wsr a nonlinear differential equation of the second order .The stipu- 
_&tion of abserme of heat sources makes it possible to state that in ~en~ghbo~~ of eem 

N 
w,~==C,+c&+ ..*, cs=- ;;A~K4~:; + (2.2) 

where C, is an arbitrary constant l Other constants are denoted below by the same 
letter with appropriate subscripts l 

The behavior of function wsl when 5 --f CXJ is det~m~ed by the ~~ptotic formula 

@Al = 9 ~-~W-I) 11 + 0 (c”f] + wn;(c, c& Ic, = - ‘;Tf’) (2*3) 
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which contains the exponentially small quantity wsr’ (5, ~6) . 

/I 

Fig. 2 

T 

X-1 
v -- x21 - c4+ c7 1 

x [ 

The asymptotic formula for 2&r 

The boundary value problem can now 
be formulated as follows: find for Wsl a 
solution which in the zero neighborhood 

satisfies formula (2.2) and for 5 -+ 00 

satisfies the asymptotic formula (2.3 ). 

The results of numerical solution of the 
problem with x = 1.4 and NPr = 
0.75 are shown in Fig. 2. The constant 

determined in the course of solution is 

c4 = 1.571. 
The boundary value problem for v,sr 

is derived similarly. The condition of 
symmetry for 5 = 0 imples that 

when c+ 00 is of the form 

(2.4) 

x 
V -k c-“‘(“-1) + . . . + c3 (5-2@‘(“-1) + . . .) + V;21 (5, c,) x21 = -qTi k, (2.5) 

with the exponentially fading term ti *ftar (5, c,) in the right-hand side, To determine 
constant cs it is necessary to add supplementary terms in the expansion of solution for 

the outer region where the motion of gas conforms to Euler ‘s equations. Using the 
properties of functions appearing in the supplementary terms [ll ] , we conclude that 

cs = 0. The curve of function v,sr specified in the zero neighborhood by for - 

mula (2.4) and approximated by formula (2.5 ) when 5 +- 00 and c, = 0 is 
shown in Fig. 2, with the calculated constant c7 = 0.830. 

Function pz2 satisfies the simplest differential equation 

dP22 r. 

-g--= (x + 1)” 

w21;;21-j + d2z’~21 ; (d;l I y ) d;l 
dC2 

z’121 dwn 
dl: 

-- 
” 5 dr, I- 

- & P2l 
L 

(Vr21 - 5) * - XV,21 
I 

c11 = “I3 + hl / h, p2 = - 2/3 + A20 / hl 

Let us specify that function P22 must remain regular when 5 -+ 0 . The bound- 
ary condition (1.6 ) is satisfied when 5 + 00 , but does not provide the possibility of 

determining the additive constant ~10. The latter can be determined by considering 

the axisymmetric problem of externalapproximations in the outer region. For the 

subsequent analysis it is important that functions related to the asymmetry of flow are 
independent of cIo. The curve of ps2 is shown in Fig. 2 for Cl0 = 0. 

3. We pass to the analysis of perturbations induced in the trail by the lift of the 
streamlined body. We surround the latter by a control surface (Fig. 1) and determine 
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the momentum component in the projection on the y axis, which is transferred through 

the part of the plane x = Const within the trail boundary. Expansions (1.4) show 
that when x --t 00 the integral defining that component is vanishingly small, which 

in other words means that the lift can be determined by the outer flow parameters. 
It was shown in [5] that the distribution of gas parameters acquire an oscillatory 

character when approaching the inner boundary of that region, and the amplitude of the 

perturbed velocity vector components increases indefinitely. For 1.6 < x < 2 the 

amplitude of excess density oscillations also increases indefinitely, It is interesting that 

oscillations begin to develop in the inviscid outer part of the stream, where inertia 

forces are balanced only by pressure forces. The oscillations generated at the trail 

boundary continue over its whole length. This results in the appearance in formulas 

(1.4), which determine the asymptotic form of solution in the trail downstream of the 
body, of terms cos (k, In z) and sin (k, In 5). Behavior of the stream near the outer 

boundary of the inner region is defined by formulas (1.7 ) that contain terms cos (k In 5) 
and sin (k In 5). Variation of oscillation frequencies along and across the wave is, 

thus different. 
Substituting expansions (1.4 ) into the Navier - Stokes equations, we obtain a ho - 

mogeneous linear system of ordinary differential equations for second approximation 

functions. Analysis of the general properties of that system isconslderablyuimplified by the 

introductionofthecomplexquantities v,* = v,ae + iVx2,, . . ., W* = W2e + iWzs 
As a result, we obtain 

at?,* 
p2id5 + (V&-6)% = - (%++q Vr*-~Vuo*- (3.1) 

Z!$!+F--+_._i~.E$.,)p* 

x-l 
ik 2 >I V,* +k+~e+~+~4~ 

) 
vq*- 
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Note the basic difference between first and second approximation functions. As 
indicated above, viscous stresses become significant in the determination of the velo - 
city vector longitudinal component. Fields of remaining parameters can be constructed 

by taking into account out of all dissipative factors only the heat transfer in the direction 
of the oncoming stream. In asymmetric perturbations induced by lift of the body the 

vectors of velocity and thermodynamic quantities equally depend on thermal conduct- 

ivity and viscosity of gas. 
The equation for the longitudinal velocity component is of the form 

(3.2) 

It is separable from system (3.1) and can be integrated after the determination of 
functions z+*, . . . , UP. The latter satisfy the equations that appear in the analy- 

sis of second approximation in the theory of unsteady gas motions. It follows from this 
that within the accepted accuracy the field of perturbations inside the trail is construc- 
ted on the basis of the equivalence principle according to which stream parameters in 

any 5 = const plane are determined independently of the values of its parameters 
in other planes. The equivalence principle was formulated for perfect (inviscid ) flows 

in [12 - 151. 
We eliminate from the second and third of Eqs. (3.1) pressure p*. Joining to the 

obtained third order equation the first and fourth of Eqs. (3.1) and using the finite re- 
lationship between density p* and specific enthalpy w*, we form a closed sixth 
order system for functions vr*, 2;+* , and w* . The equivalent system for functions 

with subscripts 2c and 2s is of the 12-th order with real coefficients. Let usexamine 

the asymptotic behavior of its twelve linearly independent solutions when 5 -+ 00. 

For brevity we adduce the asymptotics of only one function 

PZC = gal [a, cos (k, In 5) + a2 sin (k, In 5) + 0 (Q’*)l + (3.3) 
gaz [a3 cos (k8 In 5) + a4 sin (k, In 5) + 
a5 cos (k, In 5) + a6 sin (k, In 5) + 0 (@)I + 
5% [a7 cos (k, In L) + a8 sin (k, In 5) + 0 (Pa)1 + 
Pa exp (k,Nr~,5-k~)h cos (ho In %) + a,, sin (ho In 5) + 
0 (Sk.)1 + gas exp (k,5-k*)hI cos (k,, In 5) + 

al2 sin (h L In 5) + 0 (P)l 
/co = - EL& L& 



Larninar hypersonic trail downstream of a lift airfoil 297 

where the exponents are al > cc2 > us and the constants al, . . ., al2 are arbit - 
rary. Note that a2 = (3 - 2x) / (x - I), 1~ = k8 # kg. The dependence of 

%1~%, a3 and k7, k8, and k, on x is clear from Fig. 3. The form of asymptotics 

of the remaining unknown functions is similar to (3.3 ) , 

Fig. 3 

The asymptotics of all twelve ~depend~t 
solutions have an oscillatory character. The 

amplitudes of eight of these vary to power 
laws, while those of the remaining four be- 
come exponentially small when 5 --t 00. 
Because of this the curves of 01~~ CC, and 

klO, kl, do not appear in Fig. 3, The prin- 

cipal terms of asymptotics with power law 
amplitudes are determined by the Eulerian 
part of the system of Eqs. (3.1). The dissi - 
pative processes defined by higher derivatives 

can be neglected when determining these 
terms. The exponentially small asymptotics 
are, on the other hand, generated by dissipa- 

tive factors ; the terms in formula (3.5 ) that 
are proportional to constants &I and UIO 

represent thermal conductivity, while terms 

with coefficients ali and a,, represent 

viscosity effects. 

Comparison of asymptotic expansions (1.7 ) and (3.3 ) yields the six constants 

ax = a2 = 0, a3 = c21 a4 = c3, a5 
=Q=:(j (3.4) 

The order of magnitude of the amplitude of asymptotics with constants or, . . ., 

a12 is lower than that of terms in formula (1.7 ) . This impltes that no conditions 

can be imposed on these constants. The third and fourth of equalities (3.4) show that 
the behavior of second approximation functions makes it possible to join them with the 

solution for the outer flow region when 5 -+ 00 . This possibility is due to the pre- 

sence in (3.3 ) of asymptotics whose form is determined by the Eulerian part of Eqs. (3.1). 

Let us analyze the behavior of the solution of that system when 5 -+ 0. For 

this we select from the six linearly independent integrals that remain regular when the 
independent variable infinitely diminishes, the first one which is of the form 

V rat = - 
b 4k6klp2 

+ lC6Np, ***y vras = 
bl (x - 1) kk,, 

%N p, 
- C” -A- . . . 

b %kt2 
Qx?c = 1 cN c l- 

6 Pr 

(3.5) 

pzc=b1C3+..., Pzs = 
_ b (x + if”k (I+ 2N,,) 

I ‘Bxk, 
f5 +.__ 
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p2c = - h 
4x12,2 

c 

(X+l)kz 

(x + l)2c,N,, 2~ 
-2(~-~)k,c,]5+... 

p28 = - bl ‘2;;; 5 + . . . 

- b,k,,c3 + . . ., w2s = bl 
(x + iI k (I+ 2N,,) 

?I“& = 
48x 

5” + . . . 

The second regular integral is of the form 

vrzc = b2 48k2 “--~23-5x+3(~-1)~]~2+... 

v,.~, = b2 2 [ 2 + (x - 1) (+ - +‘)I 5” + . . . 

ucpzc = b 2 

ucp2s = b2 

p2c = b25 

p2c = b2 

w2c = - 

+ . . .) P!zd = 

xkrs 
(x + t)‘kz 

5 + . 

b&r25 -t . . ., 

3(x-1)+$2+... 

-I)(1 ++y]F+... 

- bz 
(X i IWNp, 53 + . 

8% 

. -7 P2s = bz 
xkk,, 

(x+1)3 5 

(x + l)2kN,, 
w2s = 8x C? + 

(3.6) 

. . 

f... 

We represent the third linearly independent integral by 

vr2c = - b3 *s+...: vt$S = 3 hc N b (’ ,“jfx2 5” + . . . (3.7 ) 

%2c = 3 b 3;5$;2 c2+..., 7hp2s = - 3 b 5 (X4--;rk12 54 + . . . 

Qzc = bd,” C . . ., 
b (~+1)~k(l+Np,.) 

Q2s = - 3 48xk, 
%’ + . . . 

P2c = 
_ b 48x2 (x - 1) k122c4 

’ (x+ l)*caNp, 5 + * . ” P2s = 0 (5”) 

w 
w, _ b (~tb I)k(l +Npr) 

--b&n55+..., 2S- 3 2c - 48x 
5’ + . . . 

Asymptotic expansion of the other three regular integrals is obtained as follows. First, 

we substitute in formulas (3.5) -(3.7 ) the quantities GM, 8~s~~ f&, pss, wzs, - 

vr2c 7 -%2c, -P2CY -Pzc and -wan for functions %ra, Vq2c, P~c, P’L~, WZ~, 23,~~~ 

z(c2s, p2sl ~2~ and wzs l 
The fourth of the sought integrals is then obtained by 

the substitution in (3.5 ) of the arbitrary constant b4 for bl , and the fifth and sixth 
regular integrals are obtained by the substitutions in (3.6) of coefficient b, for b, 
and in (3.7 ) of the arbitrary constant b, for b3 , respectively. 

The remaining six linearly independent solutions have various singularities at zero. 
Thus in the seventh and eighth solutions density pzc - b,C-‘, Qzs - b,C-’ becomes 
infinite, in the ninth and tenth pressure p2 - bg G- i, pzs - b,, 5-f increases 
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infinitely, and in the eleventh and twelfth solutions the transverse velocity vector com- 
ponents &$c - QgC - hP_“, Ores - 2rqes - by,<-’ have singularities. The pertur- 
bation field in the outer flow region may become irregular in the vicinity of its inner 

boundary C5 I, althcugh in the trail downstream of a streamlined body the excessive values 
of all gas parameters must remain finite. Thisstatement is equivalent to the equalities 

b, = b8 = b, = bl,, = bll = bl, = 0 (3.8 ) 

Let us now formulate the boundary value problem for the system of Eqs. (3.1) as 
follows:find its solution which for 5 --f 0 satisfies the six conditions (3.8) and for 

5 * 00 is defined by the asymptotic expansion (3.3 ) with constants (3.4). Thus one 
half of boundary conditions for the twelfth order system is specified at one end of the 
semi-finite interval of integration and the other half at the other end. 

The numerical solution of this problem presents serious difficulties because of various 

reasons. First of all, the coefficients at higher derivatives in the differential equations 

(3.1) tend rapidly to zero with increasing 5, because rug1 - 5-V(x-1). Second, the 
presence of exponentially small terms in asymptotic expansions (3.3 ) means that these 
equations are to be integrated from 0 to 00, since integration in the opposite direct- 
ion is unstable. Third, the specification of boundary conditions at both ends of the semi- 
infinite interval entails the necessity of adjusting the six coefficients br, . . . , h in 

expansions so as to ensure that when g--f 0 the constants a~, - - - 1 a6 in asymp- 

totic formulas have the required values when C-00. 

We begin the numerical integration of system (3.1) at some point C-sgl, and 
specify the initial data by the relationships 

(3.9) 

where functions Z&X, . . ., Wasi are assumed to be six regular asymptotics of the 
system which are proportional to coefficients bj. We successively assume only one of 

these coefficients to be nonzero: bl # 0, b, = b3= b4 = b,= b,= O;...; bl= 

b, = b, = b., = b, = 0, b, # 0. Using the computation program for calcu - 

lating the eight constants ~1, . . . ., a, in asymptotic formulas for f; + 00, we 
establish the correspondence between coefficients bl, . . ., bs and the indicated 
constants. Owing to the linearity of the boundary value problem this correspondence 

can be represented as 

(b,, b, = bS = b4 = b, = b, = 0) > (dnbl, . . ., d,~Z?l); . . . 

(b, = b, = b3 = b4 = b, = 0, be) 3 (hbs, . . ., d&s) 

The numbers &I, . . . , & are determined by calculations in which the single 

nonzero coefficient b, is made equal unity. To satisfy conditions (3.4) we stipulate 

that constants bl, . . . . be must be the solutions of the linear system of algebraic equations 

d, . . . dlt 
. . . . . . 

Db=c, DC . . . . . . 
. . . . . . 

a,, . . . 4N 

I b, 

, be : , c= 
. 

I be 
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Constants U7 and Us are determined by formulas 

% 5 jjlI W% as = $I 43jbj 

after solving system (3.10 ) (see below ) . 

The described here method was used for calculating the correction terms which in 
asymptotics (3.3 ) are estimated only as regards their order of magnitude, and the com- 

putation was terminated at points in the interval 2.5 < 5 < 3.0. 

Fig. 4 

Fig, 5 

The properties of gas were specified as follows: x = 1.4, Np+ = 0.75, and&a / 

hrs = 0.1. The calculations yielded 

b, = -0.0411, bz = 0.0100, b, = 0.0166, bp = -0.0450 (3.10 1 

b, = 0.1400, b, = 0.0~7, a7 = -0.3046, a, = -0.7569 

Repeated integration of system (3.1) with initial data (3.9) , into which coeffici - 
ents (3.10) are substituted, completely solves the boundary value problem. Curves of 
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second approximation functions are shown in Figs, 4 and 5. 
It remains to determine the longitudinal component of the streamvelocity. Asymp- 

totics of the particular solution of Eq. (3.2) is the same as that specified by formula 

(1.7) for 5 + 00 . All four asymptotics for VX, and %a, of the corms - 
ponding homogeneous equation (3.2 ) are of an oscillatory character. 

Fig. 6 

The amplitudes of two of these tend expon- 
entially to zero, while those of the other two 
conform to 5-r(2+r)‘(x-1). As in the deter- 
mination of function Z&t, we define more 
exactly boundary conditions (1.7 ) by using 
higher approximations in the outer region. 
Estimates show that the arbitrary constants to 
which are proportional power amplitude as- 
ymptotics , arezero. From this we obtain two 
boundary conditions for 6 --t 00. 

The remaining boundary conditions which 

must be satisfied when integrating Eq. (3.2 ) 
are derived by analyzing the behavior of its 
solution in the neighborhood of zero where 
the two linearly independent integrals of the 

homogeneous equation that corresponds to (3.2) are irregular. The asymptotics of the 

two regular integrals are simple 

1 
Vrac = b13 [I - t2 $;_) kl, 5” + . . .], & = - b13 tx +y12 C?+. ,. 

2 
vxec = 14 b (’ +;L ‘h i2 + . . ., v;2s = b14 [I - (’ fg;; ‘12 52 + . . .] 

The particular integral of the nonhomogeneous equation tends to zero as cs. The 
stipulation of regularity of solution when 6 = 0 yields the missing boundary con- 

ditions which are obtained by equating to zero the coefficients at the two irregular in- 

tegrals . Curves of functions v,, and uXss appear in Fig.6 for b13 = -3.77 
and bl, = 3.93. 
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